If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-84=0
a = 1; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·1·(-84)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*1}=\frac{0-4\sqrt{21}}{2} =-\frac{4\sqrt{21}}{2} =-2\sqrt{21} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*1}=\frac{0+4\sqrt{21}}{2} =\frac{4\sqrt{21}}{2} =2\sqrt{21} $
| 5x+6=-20+8x | | q^2=-50 | | 0.8(10.000)-0.05y=0.05(y+10.000) | | 1/6(x+6)+1/18=x+14 | | (2x+11)/(x+3)=0 | | 3/x+4=5/2x+17/4 | | 58=6y-3 | | 57=6y-6 | | 2(4x+3)=-4(2x-3)+5x | | 2/5a=-3/5 | | 1/2b=-7/8 | | 2(x-5)-14=-26 | | 2a=7/2 | | 3(x-6)+5=-22 | | 8r=4r-8 | | 14x+43=180 | | 60=24x^2-2x | | 60=24x-2x | | -5x+40=4x-5 | | X-8=-6x+10 | | 12x-80=-6x10 | | 14x-32=-10x+40 | | 12x+40=-8x+100 | | 8x-2=-8x+30 | | m-62=102 | | 10x+40=-4x+138 | | 2t-3t=1-t | | 2x-17=-x+1 | | 8x-7=-x+20 | | x+(-15)=25 | | 7y+3=3y+15 | | Y=6-1.2x |